Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 72.615
1.
Multimedia | MULTIMEDIA | ID: multimedia-13175

Este ejercicio es muy práctico y efectivo ya que consiste en enfocar la atención plenamente en la respiración. Al prestar atención a la inhalación y exhalación de forma consciente, se busca cultivar la conciencia del momento presente y calmar la mente.


Qi , Respiration , Mindfulness
2.
Biomed Eng Online ; 23(1): 45, 2024 May 05.
Article En | MEDLINE | ID: mdl-38705982

BACKGROUND: Sleep-disordered breathing (SDB) affects a significant portion of the population. As such, there is a need for accessible and affordable assessment methods for diagnosis but also case-finding and long-term follow-up. Research has focused on exploiting cardiac and respiratory signals to extract proxy measures for sleep combined with SDB event detection. We introduce a novel multi-task model combining cardiac activity and respiratory effort to perform sleep-wake classification and SDB event detection in order to automatically estimate the apnea-hypopnea index (AHI) as severity indicator. METHODS: The proposed multi-task model utilized both convolutional and recurrent neural networks and was formed by a shared part for common feature extraction, a task-specific part for sleep-wake classification, and a task-specific part for SDB event detection. The model was trained with RR intervals derived from electrocardiogram and respiratory effort signals. To assess performance, overnight polysomnography (PSG) recordings from 198 patients with varying degree of SDB were included, with manually annotated sleep stages and SDB events. RESULTS: We achieved a Cohen's kappa of 0.70 in the sleep-wake classification task, corresponding to a Spearman's correlation coefficient (R) of 0.830 between the estimated total sleep time (TST) and the TST obtained from PSG-based sleep scoring. Combining the sleep-wake classification and SDB detection results of the multi-task model, we obtained an R of 0.891 between the estimated and the reference AHI. For severity classification of SBD groups based on AHI, a Cohen's kappa of 0.58 was achieved. The multi-task model performed better than a single-task model proposed in a previous study for AHI estimation, in particular for patients with a lower sleep efficiency (R of 0.861 with the multi-task model and R of 0.746 with single-task model with subjects having sleep efficiency < 60%). CONCLUSION: Assisted with automatic sleep-wake classification, our multi-task model demonstrated proficiency in estimating AHI and assessing SDB severity based on AHI in a fully automatic manner using RR intervals and respiratory effort. This shows the potential for improving SDB screening with unobtrusive sensors also for subjects with low sleep efficiency without adding additional sensors for sleep-wake detection.


Respiration , Signal Processing, Computer-Assisted , Sleep Apnea Syndromes , Sleep Apnea Syndromes/physiopathology , Sleep Apnea Syndromes/diagnosis , Humans , Male , Middle Aged , Polysomnography , Female , Machine Learning , Adult , Neural Networks, Computer , Electrocardiography , Aged , Wakefulness/physiology , Sleep
3.
Chaos ; 34(5)2024 May 01.
Article En | MEDLINE | ID: mdl-38717411

We tested the validity of the state space correspondence (SSC) strategy based on k-nearest neighbor cross-predictability (KNNCP) to assess the directionality of coupling in stochastic nonlinear bivariate autoregressive (NBAR) processes. The approach was applied to assess closed-loop cardiorespiratory interactions between heart period (HP) variability and respiration (R) during a controlled respiration (CR) protocol in 19 healthy humans (aged from 27 to 35 yrs, 11 females) and during active standing (STAND) in 25 athletes (aged from 20 to 40 yrs, all men) and 25 non-athletes (aged from 20 to 40 yrs, all men). Over simulated NBAR processes, we found that (i) the SSC approach can detect the correct causal relationship as the direction leads to better KNNCP from the past of the driver to the future state of the target and (ii) simulations suggest that the ability of the method is preserved in any condition of complexity of the interacting series. Over CR and STAND protocols, we found that (a) slowing the breathing rate increases the strength of the causal relationship in both temporal directions in a balanced modality; (b) STAND is more powerful in modulating the coupling strength on the pathway from HP to R; (c) regardless of protocol and experimental condition, the strength of the link from HP to R is stronger than that from R to HP; (d) significant causal relationships in both temporal directions are found regardless of the level of complexity of HP variability and R. The SSC strategy is useful to disentangle closed-loop cardiorespiratory interactions.


Heart Rate , Stochastic Processes , Humans , Adult , Male , Female , Heart Rate/physiology , Respiration , Young Adult , Nonlinear Dynamics , Algorithms
4.
Proc Natl Acad Sci U S A ; 121(19): e2318757121, 2024 May 07.
Article En | MEDLINE | ID: mdl-38691591

How breathing is generated by the preBötzinger complex (preBötC) remains divided between two ideological frameworks, and a persistent sodium current (INaP) lies at the heart of this debate. Although INaP is widely expressed, the pacemaker hypothesis considers it essential because it endows a small subset of neurons with intrinsic bursting or "pacemaker" activity. In contrast, burstlet theory considers INaP dispensable because rhythm emerges from "preinspiratory" spiking activity driven by feed-forward network interactions. Using computational modeling, we find that small changes in spike shape can dissociate INaP from intrinsic bursting. Consistent with many experimental benchmarks, conditional effects on spike shape during simulated changes in oxygenation, development, extracellular potassium, and temperature alter the prevalence of intrinsic bursting and preinspiratory spiking without altering the role of INaP. Our results support a unifying hypothesis where INaP and excitatory network interactions, but not intrinsic bursting or preinspiratory spiking, are critical interdependent features of preBötC rhythmogenesis.


Action Potentials , Animals , Action Potentials/physiology , Models, Neurological , Neurons/physiology , Respiration , Nerve Net/physiology , Respiratory Center/physiology , Computer Simulation , Sodium/metabolism
5.
Codas ; 36(3): e20220330, 2024.
Article En | MEDLINE | ID: mdl-38695436

PURPOSE: The Awake Breathing Pattern Assessment (ABPA) is a prototypical clinical grid recently designed through an international consensus of Speech and Language Pathologists (SLPs) to categorize the awake and habitual breathing pattern during the orofacial myofunctional assessment. This cross-sectional study aims to explore the psychometric properties of the ABPA in a preschool population. METHODS: 133 children from 2;11 to 6 years old were assessed with the ABPA. The percentage of time spent breathing through the mouth was objectively measured by a CO2 sensor and used as a baseline measurement. We first performed a multivariate Latent Profile Analysis based on the CO2 measurement and a parental questionnaire to define the number of categories that best characterize the breathing pattern. Subsequently, we assessed the intra- and inter-rater reliability, internal consistency criterion validity, construct validity and sensitivity and specificity. RESULTS: The awake breathing pattern can best be described by two groups: nasal and mouth breathing. The ABPA, initially designed in three groups, was adjusted accordingly. This final version showed excellent intra-rater and inter-rater reliability. There was a significant correlation between the ABPA and the CO2 measurement. The ABPA showed a fair sensitivity and a good specificity. CONCLUSION: The reference tool based on CO2 data was used in children for the first time and was found to be reliable. The ABPA is a suitable tool for SLPs to confirm the diagnosis of mouth breathing in preschool children if more sensitive screening tools, like parental questionnaires, are used beforehand.


Mouth Breathing , Humans , Mouth Breathing/diagnosis , Mouth Breathing/physiopathology , Child, Preschool , Cross-Sectional Studies , Reproducibility of Results , Female , Male , Child , Psychometrics , Sensitivity and Specificity , Surveys and Questionnaires , Wakefulness/physiology , Respiration , Carbon Dioxide/analysis
6.
PLoS One ; 19(5): e0276568, 2024.
Article En | MEDLINE | ID: mdl-38713736

BACKGROUND: Choral activities are correlated with various health and wellbeing parameters. However, an intervention combining a music program using wind instruments and choral activities has not yet been investigated. Thus, this study aimed to assess the effects of a 12-week intervention combining a wind instrument performance program and a choral program on stress factors, quality of life, and respiratory function in adolescents located in a metropolitan city with exposure to air pollution. METHOD: This randomized controlled trial consisted of 50 adolescents, and the subjects were randomly assigned to a combination wind instrument and choral training group, a choral training group, and a control group. Following a 12-week intervention program, respiratory function, stress factors, and quality of life were compared between the three groups. RESULTS: Regarding respiratory function, with the exception of maximal inspiratory pressure, all measured variables exhibited an interaction to indicate a variation in the pattern of change(p<0.05). Furthermore, regarding stress factors and quality of life, all measured variables exhibited an interaction to indicate a variation in the pattern of change(p<0.05). As a result of the post-hoc analysis, significant differences were found in all variables in experimental group 1 compared to other groups (p<0.05). CONCLUSION: The results showed that the 12-week intervention combining a wind instrument performance program and a choral program had positive effects in improving the respiratory function, stress factors, and quality of life in adolescents. This study findings are expected to support future studies aimed at promoting overall health including respiratory function and psychological factors through various music-based programs.


Breathing Exercises , Quality of Life , Stress, Psychological , Humans , Adolescent , Male , Female , Breathing Exercises/methods , Music , Respiration , Respiratory Function Tests , Music Therapy/methods
7.
Chaos ; 34(4)2024 Apr 01.
Article En | MEDLINE | ID: mdl-38572945

Interactions between the cardiac and respiratory systems play a pivotal role in physiological functioning. Nonetheless, the intricacies of cardio-respiratory couplings, such as cardio-respiratory phase synchronization (CRPS) and cardio-respiratory coordination (CRC), remain elusive, and an automated algorithm for CRC detection is lacking. This paper introduces an automated CRC detection algorithm, which allowed us to conduct a comprehensive comparison of CRPS and CRC during sleep for the first time using an extensive database. We found that CRPS is more sensitive to sleep-stage transitions, and intriguingly, there is a negative correlation between the degree of CRPS and CRC when fluctuations in breathing frequency are high. This comparative analysis holds promise in assisting researchers in gaining deeper insights into the mechanics of and distinctions between these two physiological phenomena. Additionally, the automated algorithms we devised have the potential to offer valuable insights into the clinical applications of CRC and CRPS.


Heart , Sleep Stages , Heart Rate/physiology , Sleep Stages/physiology , Sleep/physiology , Respiration
8.
Comput Biol Med ; 173: 108390, 2024 May.
Article En | MEDLINE | ID: mdl-38569234

Radiotherapy is one of the primary treatment methods for tumors, but the organ movement caused by respiration limits its accuracy. Recently, 3D imaging from a single X-ray projection has received extensive attention as a promising approach to address this issue. However, current methods can only reconstruct 3D images without directly locating the tumor and are only validated for fixed-angle imaging, which fails to fully meet the requirements of motion control in radiotherapy. In this study, a novel imaging method RT-SRTS is proposed which integrates 3D imaging and tumor segmentation into one network based on multi-task learning (MTL) and achieves real-time simultaneous 3D reconstruction and tumor segmentation from a single X-ray projection at any angle. Furthermore, the attention enhanced calibrator (AEC) and uncertain-region elaboration (URE) modules have been proposed to aid feature extraction and improve segmentation accuracy. The proposed method was evaluated on fifteen patient cases and compared with three state-of-the-art methods. It not only delivers superior 3D reconstruction but also demonstrates commendable tumor segmentation results. Simultaneous reconstruction and segmentation can be completed in approximately 70 ms, significantly faster than the required time threshold for real-time tumor tracking. The efficacies of both AEC and URE have also been validated in ablation studies. The code of work is available at https://github.com/ZywooSimple/RT-SRTS.


Imaging, Three-Dimensional , Neoplasms , Humans , Imaging, Three-Dimensional/methods , X-Rays , Radiography , Neoplasms/diagnostic imaging , Respiration , Image Processing, Computer-Assisted/methods
10.
Front Cell Infect Microbiol ; 14: 1287557, 2024.
Article En | MEDLINE | ID: mdl-38577619

Despite extensive knowledge of antibiotic-targeted bacterial cell death, deeper understanding of antibiotic tolerance mechanisms is necessary to combat multi-drug resistance in the global healthcare settings. Regulatory RNAs in bacteria control important cellular processes such as cell division, cellular respiration, metabolism, and virulence. Here, we investigated how exposing Escherichia coli to the moderately effective first-generation antibiotic cephalothin alters transcriptional and post-transcriptional dynamics. Bacteria switched from active aerobic respiration to anaerobic adaptation via an FnrS and Tp2 small RNA-mediated post-transcriptional regulatory circuit. From the early hours of antibiotic exposure, FnrS was involved in regulating reactive oxygen species levels, and delayed oxygen consumption in bacteria. We demonstrated that bacteria strive to maintain cellular homeostasis via sRNA-mediated sudden respiratory changes upon sublethal antibiotic exposure.


Anti-Bacterial Agents , RNA , Anti-Bacterial Agents/pharmacology , Anaerobiosis , Cell Respiration , Bacteria , Respiration , Gene Expression Regulation, Bacterial
11.
Sci Rep ; 14(1): 9053, 2024 04 20.
Article En | MEDLINE | ID: mdl-38643255

The nose of the mammals is responsible for filtering, humidifying, and heating the air before entering the lower respiratory tract. This conditioning avoids, notably, dehydration of the bronchial and alveolar mucosa. However, since this conditioning is not perfect, exercising in cold air can induce lung inflammation, both for human and non-human mammals. This work aims to compare the air conditioning in the noses of various mammals during inspiration. We build our study on computational fluid dynamics simulations of the heat exchanges in the lumen of the upper respiratory tract of these mammals. These simulations show that the efficiency of the air conditioning in the nose during inspiration does not relate only to the mass m of the mammal but also to its maximal running speed v. More precisely, the results allow establishing a scaling law relating the efficiency of air conditioning in the nose of mammals to the ratio v / log 10 ( m ) . The simulations also correlate the resistance to the flow in the nose to the efficiency of this air conditioning. The obtained scaling law allows predicting the air temperature at the top of the trachea during inspiration for nasal-breathing mammals, and thus notably for humans of various ages.


Air Conditioning , Running , Animals , Nose , Respiration , Mammals
12.
Sci Rep ; 14(1): 9302, 2024 04 23.
Article En | MEDLINE | ID: mdl-38654060

We capitalized on the respiratory bodily illusion that we discovered in a previous study and called 'Embreathment' where we showed that breathing modulates corporeal awareness in men. Despite the relevance of the issue, no such studies are available in women. To bridge this gap, we tested whether the synchronization of avatar-participant respiration patterns influenced females' bodily awareness. We collected cardiac and respiratory interoceptive measures, administered body (dis)satisfaction questionnaires, and tracked participants' menstrual cycles via a mobile app. Our approach allowed us to characterize the 'Embreathment' illusion in women, and explore the relationships between menstrual cycle, interoception and body image. We found that breathing was as crucial as visual appearance in eliciting feelings of ownership and held greater significance than any other cue with respect to body agency in both women and men. Moreover, a positive correlation between menstrual cycle days and body image concerns, and a negative correlation between interoceptive sensibility and body dissatisfaction were found, confirming that women's body dissatisfaction arises during the last days of menstrual cycle and is associated with interoception. These findings have potential implications for corporeal awareness alterations in clinical conditions like eating disorders and schizophrenia.


Awareness , Body Image , Illusions , Interoception , Virtual Reality , Humans , Female , Body Image/psychology , Adult , Illusions/physiology , Young Adult , Interoception/physiology , Male , Menstrual Cycle/physiology , Menstrual Cycle/psychology , Surveys and Questionnaires , Respiration , Body Dissatisfaction/psychology
13.
Undersea Hyperb Med ; 51(1): 93-95, 2024.
Article En | MEDLINE | ID: mdl-38615358

An arterial gas embolism (AGE) is a potentially fatal complication of scuba diving that is related to insufficient exhalation during ascent. During breath-hold diving, an arterial gas embolism is unlikely because the volume of gas in the lungs generally cannot exceed the volume at the beginning of the dive. However, if a diver breathes from a gas source at any time during the dive, they are at risk for an AGE or other pulmonary overinflation syndromes (POIS). In this case report, a breath-hold diver suffered a suspected AGE due to rapidly ascending without exhalation following breathing from an air pocket at approximately 40 feet.


Diving , Embolism, Air , Humans , Embolism, Air/etiology , Breath Holding , Respiration , Diving/adverse effects , Exhalation
15.
Biomed Phys Eng Express ; 10(3)2024 Apr 18.
Article En | MEDLINE | ID: mdl-38599190

Background. Thoracoabdominal MRI is limited by respiratory motion, especially in populations who cannot perform breath-holds. One approach for reducing motion blurring in radially-acquired MRI is respiratory gating. Straightforward 'hard-gating' uses only data from a specified respiratory window and suffers from reduced SNR. Proposed 'soft-gating' reconstructions may improve scan efficiency but reduce motion correction by incorporating data with nonzero weight acquired outside the specified window. However, previous studies report conflicting benefits, and importantly the choice of soft-gated weighting algorithm and effect on image quality has not previously been explored. The purpose of this study is to map how variable soft-gated weighting functions and parameters affect signal and motion blurring in respiratory-gated reconstructions of radial lung MRI, using neonates as a model population.Methods. Ten neonatal inpatients with respiratory abnormalities were imaged using a 1.5 T neonatal-sized scanner and 3D radial ultrashort echo-time (UTE) sequence. Images were reconstructed using ungated, hard-gated, and several soft-gating weighting algorithms (exponential, sigmoid, inverse, and linear weighting decay outside the period of interest), with %Nprojrepresenting the relative amount of data included. The apparent SNR (aSNR) and motion blurring (measured by the maximum derivative of image intensity at the diaphragm, MDD) were compared between reconstructions.Results. Soft-gating functions produced higher aSNR and lower MDD than hard-gated images using equivalent %Nproj, as expected. aSNR was not identical between different gating schemes for given %Nproj. While aSNR was approximately linear with %Nprojfor each algorithm, MDD performance diverged between functions as %Nprojdecreased. Algorithm performance was relatively consistent between subjects, except in images with high noise.Conclusion. The algorithm selection for soft-gating has a notable effect on image quality of respiratory-gated MRI; the timing of included data across the respiratory phase, and not simply the amount of data, plays an important role in aSNR. The specific soft-gating function and parameters should be considered for a given imaging application's requirements of signal and sharpness.


Imaging, Three-Dimensional , Lung , Infant, Newborn , Humans , Imaging, Three-Dimensional/methods , Respiration , Magnetic Resonance Imaging/methods , Algorithms
16.
Int J Yoga Therap ; 34(2024)2024 Apr 01.
Article En | MEDLINE | ID: mdl-38640400

A previous study discovered that two speakers with moderate apraxia of speech increased their sequential motion rates after unilateral forced-nostril breathing (UFNB) practiced as an adjunct to speech-language therapy in an AB repeated-measures design. The current study sought to: (1) delineate possible UFNB plus practice effects from practice effects alone in motor speech skills; (2) examine the relationships between UFNB integrity, participant-reported stress levels, and motor speech performance; and (3) sample a participant-led UFNB training schedule to contribute to the literature's growing understanding of UFNB dosage. A single-subject (n-of-1 trial), ABAB reversal design was used across four motor speech behaviors. A 60-year-old female with chronic, severe apraxia of speech participated. The researchers developed a breathing app to assess UFNB practice integrity and administer the Simple Aphasia Stress Scale after each UFNB session. The participant improved from overall severe to moderate apraxia of speech on the Apraxia Battery for Adults. Visual inspection of graphs confirmed robust motor speech practice effects for all variables. Articulatory-kinematic variables demonstrated sensitivity to the UFNB-plus-practice condition and correlated to stress scale scores but not UFNB integrity scores. The participant achieved 20-minute UFNB sessions 4 times per week. Removal of UFNB during A2 (UFNB withdrawal) and after a 10-day break during B2 (UFNB full dosage) revealed UFNB practice effects on stress scale scores. UFNB with motor speech practice may benefit articulatory-kinematic skills compared to motor speech practice alone. Regular, cumulative UFNB practice appeared to lower self-perceived stress levels. These findings, along with prior work, provide a foundation to further explore yoga breathing and its use with speakers who have apraxia of speech.


Aphasia , Apraxias , Yoga , Adult , Female , Humans , Middle Aged , Speech , Apraxias/therapy , Respiration , Aphasia/therapy
17.
J Biomech Eng ; 146(9)2024 Sep 01.
Article En | MEDLINE | ID: mdl-38557592

Development of respiratory tissue constructs is challenging due to the complex structure of native respiratory tissue and the unique biomechanical conditions induced by breathing. While studies have shown that the inclusion of biomechanical stimulus mimicking physiological conditions greatly benefits the development of engineered tissues, to our knowledge no studies investigating the influence of biomechanical stimulus on the development of respiratory tissue models produced through three-dimensional (3D) bioprinting have been reported. This paper presents a study on the utilization of a novel breath-mimicking ventilated incubator to impart biomechanical stimulus during the culture of 3D respiratory bioprinted constructs. Constructs were bioprinted using an alginate/collagen hydrogel containing human primary pulmonary fibroblasts with further seeding of human primary bronchial epithelial cells. Biomechanical stimulus was then applied via a novel ventilated incubator capable of mimicking the pressure and airflow conditions of multiple breathing conditions: standard incubation, shallow breathing, normal breathing, and heavy breathing, over a two-week time period. At time points between 1 and 14 days, constructs were characterized in terms of mechanical properties, cell proliferation, and morphology. The results illustrated that incubation conditions mimicking normal and heavy breathing led to greater and more continuous cell proliferation and further indicated a more physiologically relevant respiratory tissue model.


Bioprinting , Tissue Scaffolds , Humans , Tissue Scaffolds/chemistry , Tissue Engineering/methods , Hydrogels/chemistry , Respiration , Printing, Three-Dimensional , Bioprinting/methods
19.
Sensors (Basel) ; 24(7)2024 Mar 24.
Article En | MEDLINE | ID: mdl-38610281

In this study, we propose a low-cost piezoelectric flexible pressure sensor fabricated on Kapton® (Kapton™ Dupont) substrate by using aluminum nitride (AlN) thin film, designed for the monitoring of the respiration rate for a fast detection of respiratory anomalies. The device was characterized in the range of 15-30 breaths per minute (bpm), to simulate moderate difficult breathing, borderline normal breathing, and normal spontaneous breathing. These three breathing typologies were artificially reproduced by setting the expiratory to inspiratory ratios (E:I) at 1:1, 2:1, 3:1. The prototype was able to accurately recognize the breath states with a low response time (~35 ms), excellent linearity (R2 = 0.997) and low hysteresis. The piezoelectric device was also characterized by placing it in an activated carbon filter mask to evaluate the pressure generated by exhaled air through breathing acts. The results indicate suitability also for the monitoring of very weak breath, exhibiting good linearity, accuracy, and reproducibility, in very low breath pressures, ranging from 0.09 to 0.16 kPa. These preliminary results are very promising for the future development of smart wearable devices able to monitor different patients breathing patterns, also related to breathing diseases, providing a suitable real-time diagnosis in a non-invasive and fast way.


Respiration , Respiratory Rate , Humans , Reproducibility of Results , Aluminum Compounds
20.
Sensors (Basel) ; 24(7)2024 Mar 31.
Article En | MEDLINE | ID: mdl-38610446

Respiratory problems are common amongst older people. The rapid increase in the ageing population has led to a need for developing technologies that can monitor such conditions unobtrusively. This paper presents a novel study that investigates Wi-Fi and ultra-wideband (UWB) antenna sensors to simultaneously monitor two different breathing parameters: respiratory rate, and exhaled breath. Experiments were carried out with two subjects undergoing three breathing cases in breaths per minute (BPM): (1) slow breathing (12 BPM), (2) moderate breathing (20 BPM), and (3) fast breathing (28 BPM). Respiratory rates were captured by Wi-Fi sensors, and the data were processed to extract the respiration rates and compared with a metronome that controlled the subjects' breathing. On the other hand, exhaled breath data were captured by a UWB antenna using a vector network analyser (VNA). Corresponding reflection coefficient data (S11) were obtained from the subjects at the time of exhalation and compared with S11 in free space. The exhaled breath data from the UWB antenna were compared with relative humidity, which was measured with a digital psychrometer during the breathing exercises to determine whether a correlation existed between the exhaled breath's water vapour content and recorded S11 data. Finally, captured respiratory rate and exhaled breath data from the antenna sensors were compared to determine whether a correlation existed between the two parameters. The results showed that the antenna sensors were capable of capturing both parameters simultaneously. However, it was found that the two parameters were uncorrelated and independent of one another.


Body Fluids , Respiration , Humans , Aged , Exhalation , Respiratory Rate , Aging
...